Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry.

نویسندگان

  • Steven Munevar
  • Yu-Li Wang
  • Micah Dembo
چکیده

Ca2+ ions have long been implicated in regulating various aspects of cell movements. We found that stretching forces applied through flexible substrata induced increases in both intracellular Ca2+ concentration and traction forces of NIH3T3 fibroblasts. Conversely, application of gadolinium, an inhibitor of stretch-activated ion channels, or removal of extracellular free Ca2+ caused inhibition of traction forces. Gadolinium treatment also inhibited cell migration without affecting the spread morphology or protrusive activities. Local application of gadolinium to the trailing region had no detectable effect on the overall traction forces, while local application to the leading edge caused a global inhibition of traction forces and cell migration, suggesting that stretch-activated channels function primarily at the leading edge. Immunofluorescence microscopy indicated that gadolinium caused a pronounced decrease in vinculin and phosphotyrosine concentrations at focal adhesions. Our observations suggest that stretch-activated Ca2+ entry in the frontal region regulates the organization of focal adhesions and the output of mechanical forces. This mechanism probably plays an important role in sustaining cell migration and in mediating active and passive responses to mechanical signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium and mechanically induced potentials in fibroblasts of rat atrium.

OBJECTIVES Electrically non-excitable cardiac fibroblasts in the sino-atrial node region are mechano-sensitive. Rhythmic contraction of adjacent myocardium, or artificial stretch of the tissue, produce a reversible change in the membrane potential: mechanically induced potentials (MIP). Stretch of normal cardiomyocytes can be associated with intracellular calcium changes. The purpose of this st...

متن کامل

Stretch-activated channels in stretch-induced muscle damage: role in muscular dystrophy.

1. Stretch-induced muscle injury results in the damage that causes reduced force and increased membrane permeability. This muscle damage is caused, in part, by ionic entry through stretch-activated channels and blocking these channels with Gd3+ or streptomycin reduces the force deficit associated with damage. 2. Dystrophin-deficient muscles are more susceptible to stretch-induced muscle injury ...

متن کامل

Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching.

To study early reorganization of the cytoskeleton in response to physical forces, human gingival and periodontal ligament fibroblasts were cultured on flexible plastic substrata and stretched by mechanical deformation of the substratum. F-actin was measured by quantitative spectrofluorimetry of FITC-phalloidin-stained cells. Fluorescence due to FITC-phalloidin was reduced stoichiometrically by ...

متن کامل

Quantum dots modulate intracellular Ca2+ level in lung epithelial cells

While adverse effects of nanoparticles on lung health have previously been proposed, few studies have addressed the direct effects of nanoparticle exposure on the airway epithelium. In this work, we examine the response of the pulmonary airway to nanoparticles by measuring intracellular Ca2+ concentration ([Ca2+]i) in the Calu-3 epithelial layer stimulated by 3-mercaptopropionic-acid (3MPA) coa...

متن کامل

A troponin switch that regulates muscle contraction by stretch instead of calcium.

The flight muscles of many insects have a form of regulation enabling them to contract at high frequencies. The muscles are activated by periodic stretches at low Ca2+ levels. The same muscles also give isometric contractions in response to higher Ca2+. We show that the two activities are controlled by different isoforms of TnC (F1 and F2) within single myofibrils. F1 binds one Ca2+ with high a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004